Small pellets, big impact: The evolution of organic fertilizer through granulation

In organic fertilizer production, granulation is more than just a cosmetic enhancement. Its primary purpose lies in practicality. Powdered organic fertilizers have a low density and are bulky, taking up a lot of space during storage and transportation. They are also prone to generating dust, leading to nutrient loss and environmental pollution. Granulation compacts the material, significantly reducing its volume, making long-distance transportation and economical storage possible.

More importantly, granulation profoundly impacts the ease and efficiency of fertilization. Uniform granules facilitate mechanized spreading, adapting to the operational needs of modern large-scale farms. Furthermore, their compact structure regulates the release rate of nutrients into the soil, preventing rapid decomposition and providing a more stable and long-lasting nutritional supply for crops.

So, how are various agricultural and forestry wastes transformed into uniform granules? Currently, mainstream granulation processes, such as disc granulators and double roller press granulators, each have their own advantages.

The advancement of granulation technology, from dusty powder fertilizer to uniform, uniform granules, is a significant step toward the modernization and standardization of traditional organic fertilizers. It has transformed organic fertilizer from a traditional “homegrown” method into a standardized commodity that can be integrated into modern agricultural production systems. These tiny granules embody the industry’s unwavering pursuit of efficiency, environmental protection, and practicality.

The “Competition” between large wheel compost turners and traditional compost turning equipment

In the field of organic waste treatment, compost turning equipment is a critical tool. The emergence of large wheel compost turning machines has disrupted the traditional compost turning system, creating a fierce competition with it.

Traditional trough compost turning machines typically require the construction of fixed fermentation tanks, which not only limits the equipment’s flexibility but also takes up a significant amount of site space. For example, a small organic waste treatment project with a daily processing capacity of 10 tons would require the construction of at least two fermentation tanks, each 10 meters long and 3 meters wide. Including the spacing between the tanks and the operating space, the total area required is approximately 100 square meters.

Large wheel compost turning machines, on the other hand, have relatively low site requirements. Without the need for fixed fermentation tanks, they can operate in more open areas. To process the same 10 tons of organic waste, a large wheel compost turning machine may only require approximately 60 square meters of site space, significantly saving space.

Traditional compost turning equipment has a relatively limited turning range, typically 5-10 meters wide and 1-1.5 meters deep. Large-wheel compost turning machines, on the other hand, can reach widths of up to 30 meters and depths of 1.5-3 meters, enabling them to cover a wider area and greater depths.

Conventional equipment can have blind spots, resulting in incomplete fermentation of some materials. Large wheel compost turning machines, through symmetrical turning and a speed-adjustable, shifting trolley, achieve seamless turning, ensuring more even mixing and more complete fermentation.

Rotary drum granulator: The core “Shaping” equipment in fertilizer production

In fertilizer processing, the rotary drum granulator is a key piece of equipment for converting powder into granules. Its stable performance makes it a common choice for most fertilizer production scenarios.

Structurally, the core of a rotary drum granulator consists of an inclined drum, a drive system, a spray device, and a heating and insulation layer. The drum’s tilt angle can be adjusted based on the characteristics of the raw material, typically controlled at 3°-5°. This ensures adequate tumbling of the raw material while preventing the granules from clumping due to prolonged dwell time. The drive system drives the drum at a constant speed of 10-20 rpm via gears or belts, ensuring a stable and controllable granulation process.

During operation, mixed fertilizer raw materials enter the drum through the feed inlet. As the drum rotates, the raw materials continuously tumble and collide within the drum. Simultaneously, a spray device applies an appropriate amount of binder to the raw materials, gradually agglomerating them into small granules. The heating and insulation layer maintains the temperature inside the drum within an optimal range, helping the granules quickly solidify and form. Finally, the formed fertilizer granules are discharged from the discharge port and enter the subsequent screening and cooling stages.

This rotary drum granulator’s advantage lies in its wide adaptability. Whether it’s nitrogen-phosphorus-potassium compound fertilizer, organic fertilizer, or biological fertilizer, efficient granulation can be achieved by adjusting parameters. The highly uniform granulation and moderate granule strength facilitate subsequent storage and transportation, providing equipment support for the large-scale advancement of fertilizer production.

How to choose a suitable drum screener machine for organic fertilizer production?

In the organic fertilizer production process, the quality of material screening directly affects the particle uniformity and application effectiveness of the finished fertilizer. Therefore, selecting an appropriate drum screener machine is crucial. Considering the material characteristics and process requirements of organic fertilizer production, the following key aspects should be considered when selecting a suitable drum screening machine.

First, focus on the equipment’s processing capacity and screening efficiency. Organic fertilizer production is often a continuous process, so the equipment must be able to match the overall production line capacity to avoid material accumulation due to slow screening speeds. Furthermore, screening efficiency must meet industry standards to ensure rapid separation of materials of varying particle sizes and minimize unscreened material residue. When selecting a drum screener machine, pay particular attention to its ability to screen wet and easily agglomerated materials. The equipment must be able to effectively handle these materials and avoid clogging of the screen openings.

Second, consider the equipment’s wear and corrosion resistance. Organic fertilizer materials may contain corrosive components or hard impurities. A high-quality drum screener machine should use wear-resistant and corrosion-resistant materials for its core components, especially the screen and drum lining. This reduces the need for routine maintenance, extends the equipment’s lifespan, and minimizes the risk of production interruptions.

Finally, the equipment’s adjustable flexibility and ease of operation must also be considered. Different batches of organic fertilizer may require different screening accuracies, and the equipment should be able to flexibly adjust parameters such as mesh size and vibration frequency to accommodate diverse production needs.

BB fertilizer mixers: Key equipment for ensuring uniform nutrient distribution in blended fertilizers

In BB fertilizer (blended fertilizer) production, the BB fertilizer mixer is a key piece of equipment that determines product quality. Its core function is to evenly blend multiple raw materials of varying density and particle size into a nutrient-consistent fertilizer, directly impacting subsequent fertilization effectiveness.

In terms of equipment structure, mainstream BB fertilizer mixers mostly adopt a closed-cylinder design with an internal mixing assembly. The cylinder is typically positioned horizontally, with the mixing assembly driven by a motor. Some BB fertilizer mixers also feature forward and reverse rotation to reduce residual material in the cylinder. The feed inlet is typically located at the top of the cylinder, and the discharge outlet at the bottom. Some models feature an observation window for easily monitoring the mixing status.

During operation, raw materials such as urea, monoammonium phosphate, and potassium chloride are introduced into the mixing cylinder according to the formulated ratio. The rotating mixing assembly propels the raw materials: the screw conveys the raw materials from both ends toward the center, the paddles shear and stir the raw materials, and the guide plates facilitate convection, ensuring full contact between raw materials with density differences of 30%-50%. The entire process does not require the addition of adhesives, and mechanical force is used to achieve “small particles filling gaps and large particles colliding with each other”, ultimately achieving a uniform mixing effect.

Chain crusher: An all-round aid for material crushing in multiple industries

Chain crushers are not limited to organic fertilizer production; they also play a vital role in a variety of industries, including chemicals, building materials, and mining. They are truly versatile tools for material crushing in various industries, their flexible adaptability enabling them to deliver outstanding performance in diverse production scenarios.

In the chemical industry, they can pre-process and crush various medium-hardness industrial raw materials (such as sulfur lumps and soda ash agglomerates), providing uniformly sized materials for subsequent chemical reactions or processing steps. This prevents incomplete reactions caused by uneven raw material size and improves the quality and stability of chemical products.

In the building materials sector, chain crushers offer efficient crushing of materials such as limestone and shale. They can adjust the output particle size to meet the diverse particle size requirements of building materials production, such as cement and bricks.

In the mining industry, their high adaptability is particularly evident when dealing with ores of varying hardness, allowing crushing parameters to be adjusted based on the ore’s characteristics to ensure optimal crushing results.

In addition, this chain crusher can also be used in scenarios such as agricultural fertilizer crushing. With its wide applicability, it has become an important equipment in the material crushing process of various industries.

Fertilizer granulators: How to adapt to the special production requirements of functional fertilizers?

As the fertilizer industry upgrades toward “precision and functionalization,” demand for functional fertilizers such as slow-release fertilizers, biofertilizers, and trace element compound fertilizers has surged. The production of these fertilizers places special demands on granulators, balancing functional retention and granule formation.

For slow-release fertilizer production, fertilizer granulators must meet the dual requirements of “granule formation” and subsequent coating. For example, when producing sulfur-coated slow-release fertilizers, the granulation process requires producing base granules with a smooth surface and uniform hardness. The “rolling forming” feature of a rotary drum granulator is perfectly suited for this purpose. By controlling the drum speed (8-12 rpm) and the amount of binder used, the granules are naturally rounded and smooth. Some granulators also feature a “pre-cooling section” at the discharge port to reduce the granule temperature to below 30°C, paving the way for subsequent coating and preventing the coating material from melting and becoming ineffective due to high temperatures.

For compound fertilizers containing trace elements, fertilizer granulators must address the issue of uneven trace element distribution. These fertilizers contain low concentrations of trace elements such as zinc, boron, and iron. Inhomogeneous mixing can lead to nutrient deficiencies in some granules. In this case, the low-speed extrusion design of a flat die granulator is optimal. After thoroughly mixing the trace elements with the base raw materials in a twin-shaft premixer, the low-speed rollers slowly extrude the granules into shape, minimizing material separation and ensuring a trace element content variation of ≤0.1% per granule, thus preventing functional deficiencies.

For biofertilizers, the granulator’s low-temperature performance is crucial. Flat die and disc granulators utilize a low-friction, no-high-temperature extrusion design to maintain a temperature within the granulation chamber below 40°C, ensuring the survival rate of the microbial inoculant.

Reducing costs and improving efficiency: Several core advantages of disc granulators

For manufacturing companies, equipment performance and cost control are crucial. Disc granulators excel in both areas, making them a powerful tool for enhancing competitiveness.

First, they offer exceptional energy efficiency. Compared to traditional granulation equipment, they consume less energy. Long-term use can save companies significant energy costs and effectively reduce production and operating costs. Second, disc granulators offer high production efficiency and enable continuous production. Depending on production needs, hourly output can range from several tons to tens of tons, meeting the production needs of companies of all sizes and helping them quickly complete production tasks.

Disc granulators offer even greater advantages in granulation quality. They produce highly uniform, strong, and resistant granules, ensuring high product quality for fertilizers, mineral powders, and chemical raw materials. Furthermore, they are easy to operate, requiring minimal training for operators to master their operation. This reduces production risks associated with complex operations. Maintenance is also relatively simple, further reducing management costs.

Fertilizer granulators contribute to efficient agricultural development

With the agriculture and fertilizer industries deeply intertwined, fertilizer form directly impacts fertilization effectiveness and industry efficiency. As the core equipment connecting fertilizer raw materials and finished products, fertilizer granulators are becoming a key driver of industry upgrades.

Fertilizer granulators transform powdered raw materials into uniform fertilizer granules through processes such as physical extrusion and conditioning. These granulated fertilizers are not only highly stable, making them suitable for long-term storage and long-distance transportation, but also enable a slow release of nutrients, extending the fertilizer’s effective lifespan and enabling more efficient crop absorption, thereby boosting agricultural production returns from the source.

Furthermore, the adaptability of fertilizer granulators meets the diverse needs of the industry. Whether producing organic fertilizers, compound fertilizers, or customized fertilizers for specific crops, the equipment can adapt to different raw material ratios by adjusting parameters. More importantly, modern fertilizer granulators continuously optimize energy efficiency, improving production efficiency while reducing energy consumption.

For fertilizer companies, fertilizer granulators are a powerful tool for enhancing product competitiveness. Against the backdrop of growing demand for high-efficiency fertilizers in agriculture, fertilizer granulators will undoubtedly drive fertilizer production towards greater efficiency, higher quality, and greater environmental protection.

From pretreatment to maturity! Standard operating procedures for a windrow compost turner

To maximize the performance of a windrow compost turner, a scientific and standardized operating process must be followed. The entire process of the windrow compost turner revolves around four key steps: raw material pretreatment, windrow accumulation, turning and fermentation, and determination of maturity.

Raw material pretreatment is fundamental. Collected organic materials must first be sorted to remove impurities such as metal and plastic. Livestock and poultry manure should be air-dried to a moisture content below 65%, and straw should be pulverized to 5-10 cm in length. The raw materials should then be mixed at a carbon-to-nitrogen ratio of 25-30:1. The carbon and nitrogen content can be adjusted by adding straw or manure, ultimately achieving a moisture content of 55%-60%. At this point, the material will clump when held and fall apart upon contact, achieving optimal fermentation conditions.
Next, the pre-treated raw materials are stacked into trapezoidal stacks at the fermentation site. These stacks are typically 3-5 meters wide at the base, 1.5-2.5 meters wide at the top, and 1-1.8 meters high. The stack length can be adjusted flexibly based on the site and production volume. A 1.5-2 meter passageway is left between the stacks to facilitate equipment access and ventilation.

Turning and tossing is a key step in fermentation. After starting the windrow compost turner, the depth of the tossing mechanism is adjusted according to the height of the stack, ensuring that the tossing teeth penetrate 10-20 cm into the bottom of the material. The initial fermentation lasts 1-3 days, with the first tossing occurring when the material temperature reaches 50-60°C. The high-temperature period lasts 4-10 days. When the temperature rises to 60-70°C, the stacks are tossed every 1-2 days to kill harmful bacteria. The cooling period lasts 11-20 days. When the temperature drops to 40-50°C, the stacks are tossed every 2-3 days to promote humus formation. The entire fermentation cycle lasts 15-25 days.

Finally, the material is judged by maturity. When the temperature is close to room temperature, the color is dark brown, the texture is loose, and there is no odor or earthy smell, it is considered mature and can be sent to the next stage for processing.