Disc granulator: An efficient “Pellet Former” in fertilizer production

In fertilizer granulation production, disc granulators, with their simple structure and easy operation, have become a common tool for small and medium-sized fertilizer companies. They are particularly widely used in granulating compound and organic fertilizer raw materials.

In terms of its core structure, a disc granulator primarily consists of an inclined disc, a transmission system, a distributor, a spray system, and a frame. The disc’s tilt angle and rotational speed are key parameters. Typically, the tilt angle is controlled between 15° and 30°, and the rotational speed is maintained between 15 and 30 rpm. By adjusting these two parameters, fertilizer raw materials of varying moisture and particle size can be accommodated. The transmission system often utilizes a gear reduction design to ensure smooth disc operation and prevent uneven particle size due to speed fluctuations.

During operation, the mixed fertilizer raw materials are evenly delivered by the distributor into the rotating disc. As the disc rotates, the raw materials roll along the inner wall of the disc under the combined effects of centrifugal force, gravity, and friction. At this point, the spray device precisely applies the binder, gradually agglomerating the raw materials into small particles. As the particles continue to roll, they absorb the raw materials and grow larger. Once they reach the desired particle size, they overflow from the edge of the disc and enter the subsequent stages.

This disc granulator offers advantages in highly uniform granulation, low energy consumption, and low maintenance costs; only regular inspections of the disc wear and lubrication of the transmission components are required.

Flat die granulator: An eco-friendly tool for fertilizer pellet formation

In the production of organic and compound fertilizers, pellet formation is a key step in determining fertilizer quality. Flat die granulators, with their adaptability and low energy consumption, have become a mainstream piece of equipment in the industry.

This flat die granulator operates with a clear and efficient process: powdered raw materials fed from a hopper enter the granulation chamber, where they are squeezed into the die holes by the relative motion of a roller and a flat die. The exit cutter then cuts them into uniform cylindrical pellets, eliminating the need for complex pretreatment.

Its core advantages lie in three key areas: a granulation rate exceeding 90%, uniform pellet strength, and the preservation of nutrients such as nitrogen, phosphorus, and potassium. It is compatible with a wide range of organic materials, including livestock and poultry manure, straw, and humic acid, and can even successfully form crude fiber materials with low cohesiveness. Furthermore, it eliminates the need for additional drying, enabling direct pelletization with a moisture content of 20%-40%, significantly reducing energy costs.

Amid the trend toward green agriculture, flat die granulator environmental value is particularly prominent. Converting agricultural waste into structured granular fertilizer not only solves the pollution problem of straw and feces, but also improves fertilizer application efficiency. By using molds with different apertures, granule specifications can be flexibly adjusted to meet diverse fertilization needs.

Fertilizer granulator machines: Adaptation strategies for different fertilizer types

Many fertilizer companies switch product categories based on market demand. However, if the compatibility of the fertilizer granulator machine with the fertilizer type is neglected, problems such as reduced granule quality and frequent equipment failures can occur.

For organic fertilizers (including straw and fermented manure), the key requirement is “adaptability to the fiber raw material and avoid entanglement and machine blockage.” Flat die granulators or rotary drum granulators are preferred. The vertical extrusion design of the flat die cuts long fibers, and the trapezoidal, non-slip rollers reduce fiber entanglement. Rotary drum granulators use rolling to form the granules, and the lifting plate evenly lifts the fiber material to avoid localized accumulation.

For compound fertilizers (containing phosphate rock and potassium chloride), the key requirements are “high granule hardness and transport resistance.” The high compression ratio of the ring die granulator allows hard mineral raw materials to be extruded with a compressive strength of over 15N, meeting the requirements of long-distance transportation.

For biofertilizers (containing functional microbial agents), the key principle is “low-temperature granulation to protect the activity of the agents.” A flat die granulator (chamber temperature ≤ 40°C) or a disc granulator (rolling, no high-temperature extrusion) can prevent inactivation of microbial agents.

For slow-release fertilizers (including coating materials), “smooth granules suitable for subsequent coating” are required. The rolling forming method of a rotary drum granulator produces smooth, uniformly sized granules, which prevent the coating from detaching during coating.

NPK fertilizer granulator machine: A key equipment for efficient fertilizer production

In the process of agricultural modernization, NPK compound fertilizer, containing the three core nutrients of nitrogen, phosphorus, and potassium, has become a crucial factor in increasing crop yields. As the core equipment for converting NPK raw materials into practical fertilizers, NPK fertilizer granulator machines are profoundly impacting the fertilizer industry’s production efficiency and product quality.

The core value of NPK fertilizer granulator machines lies in resolving raw material form issues. Through the granulator’s physical processing, powdered raw materials are extruded and shaped into uniform granules. This not only improves fertilizer stability, facilitating long-distance transportation and long-term storage, but also ensures a slow release of nutrients during application, improving crop absorption.

Furthermore, NPK fertilizer granulator machines offer significant advantages: high efficiency and adaptability. Modern granulation equipment can adjust parameters based on different raw material ratios to meet the production needs of various NPK compound fertilizers, including those high in nitrogen, phosphorus, and potassium. Furthermore, the equipment’s energy consumption is continuously optimized, increasing production speed while reducing operating costs.

For the fertilizer industry, NPK fertilizer granulator machines are not only a production tool but also a key to enhancing product competitiveness. With the growing demand for high-efficiency fertilizers in agriculture, NPK fertilizer granulator machines will undoubtedly continue to play a vital role in driving the fertilizer industry towards greater efficiency and higher quality.

Double roller press granulators empower green fertilizer production

With the advancement of green agriculture, “environmental protection and resource utilization” have become core priorities in fertilizer production. Double roller press granulators (fertilizer compaction machines), with their outstanding environmental performance and resource utilization, have become key equipment for green fertilizer processing.

The double roller press granulator offers significant technological advantages in improving fertilizer quality. The fertilizer granules formed through physical extrusion have uniform density and high hardness, making them less prone to breakage and clumping during transportation and storage. More importantly, after application to the soil, these granular fertilizers release nutrients at a steady rate, extending their effective life and reducing the loss of nutrients such as nitrogen, phosphorus, and potassium through rainwater erosion.

The double roller press granulator’s environmental value is also reflected in its raw material processing and energy consumption control. The double roller press granulator can directly process agricultural waste such as fermented livestock and poultry manure, composted straw, and fruit and vegetable residues, transforming “waste” into high-quality organic fertilizer and achieving resource recycling. The equipment also eliminates the need for high-temperature drying, reducing emissions from coal or gas combustion. Its enclosed conveying design effectively controls dust spillage, improving the production environment.

Furthermore, its operation and maintenance requirements are low. Its simple structure and clear procedures allow workers to master the process after a short training period. Routine maintenance requires only regular inspection of the squeeze rollers for wear and cleaning of the feed channel, significantly reducing operational costs for small and medium-sized fertilizer companies.

Flat die granulator: Solving the problem of fiber entanglement in organic fertilizer

Fiber raw materials such as straw, mushroom residue, and rice husks are common components in organic fertilizer production. However, these materials are prone to fiber entanglement with the rollers during pelletizing, leading to equipment stalls and a sharp drop in pelletizing efficiency. The flat die granulator, with its targeted structural design, is an ideal solution for this problem.

The core cause of fiber entanglement is insufficient cleavage of long fibers in the raw material, or a smooth roller surface that causes fibers to entangle as the rollers rotate. The flat die granulator’s design addresses this problem by focusing on two key points: First, the flat die holes feature a “deep straight hole” layout (15-20mm depth). This shortens the vertical force path when the fiber raw material is squeezed into the hole, reducing the fiber’s residence time between the rollers and the flat die.

Second, a pre-crushing pretreatment is recommended, with the fiber raw material pulverized to 0.5-1mm to ensure that long fibers are cut, thus reducing the likelihood of entanglement at the source.

In actual production, if slight entanglement still occurs, the gap between the roller and the flat die can be adjusted to maintain 0.2-0.3mm, or 1%-2% bentonite can be added to the raw materials for further optimization. This solution can increase the smoothness of granulation of fiber raw materials to over 90%, avoiding frequent downtime for cleaning and ensuring stable operation of the organic fertilizer production line.

Double screws compost turning machine: The “Core of Efficient Turning” for organic fertilizer fermentation

In organic fertilizer production, the quality of compost turning during the fermentation process directly determines fertilizer maturity and nutrient retention. The double screws compost turning machine, with its unique structural design, is a key device for addressing uneven compost turning and slow fermentation. Its dual helical operation ensures sufficient oxygen and uniform heat dissipation within the fermentation tank, significantly improving fermentation efficiency.

The core working components of the double screws compost turning machine are two sets of parallel spiral blades. As the device moves along the fermentation tank track, the blades rotate clockwise, tossing the bottom material upward while simultaneously dispersing it to the sides. This turning method creates a “rolling up and down, mixing left and right” motion pattern for the material.

During the fermentation process, turning the compost not only provides sufficient oxygen for microorganisms but also quickly dissipates heat generated by the fermentation process, preventing nutrient loss due to localized high temperatures. For different raw materials such as livestock and poultry manure, straw, etc., the spiral speed and double screws compost turning machine movement speed can be adjusted to control the turning depth (up to 1.5-3m) and frequency, ensuring that the materials are fully composted within 7-15 days. Compared with manual turning, the efficiency is increased by more than 10 times.

Key considerations for drum fertilizer dryer selection

For fertilizer companies, choosing the right drum fertilizer dryer not only ensures effective drying but also reduces subsequent energy consumption and maintenance costs.

1. Suitable Heating Method for Fertilizer Type

For organic fertilizer production (including fiber-based fermented materials), the preferred option is “hot air heating.” Direct contact between the hot air and the material results in faster drying and prevents fiber sticking to the wall. For compound fertilizer production (wet granules after granulation), the “steam heating” option offers a milder temperature and reduces granule breakage. For low-temperature drying of biofertilizers (to prevent inactivation of microbial inoculants), the “low-temperature hot air” option is recommended to preserve microbial activity.

2. Matching Drum Specifications to Production Capacity

The drum diameter and length directly determine the processing capacity. When selecting a drum fertilizer dryer, calculate the hourly processing capacity based on the daily production capacity, allowing for a 10%-15% margin to ensure sufficient material residence time.

3. Targeted Selection of Anti-Stick Designs

High-humidity organic fertilizers tend to stick to the inner wall of the drying drum. When selecting a drum fertilizer dryer, confirm whether it features an anti-sticking skimmer or polished inner wall treatment to reduce material residue and avoid frequent downtime for cleaning. When processing highly sticky wet compound fertilizer pellets, a combination of a guide plate and skimmer can be used to guide material flow smoothly.

4. Energy Consumption and Environmental Parameters

Prioritize equipment with high thermal efficiency to reduce fuel waste. Also, consider the suitability of exhaust gas treatment. The hot and humid exhaust gas generated during the drying process requires dust removal and desulfurization equipment to ensure compliance with environmental emission standards in the fertilizer industry.

Flat die granulator: Understanding the “Simple and Efficient” logic of granulation

In fertilizer granulation production, flat die granulators are the preferred equipment for small and medium-sized enterprises due to their simple structure and easy operation. They are particularly suitable for fertilizers with complex raw material characteristics, such as organic fertilizers and biofertilizers. The core of their granulation principle lies in the vertical extrusion design of a “flat die + roller” system, which ensures effective granulation while reducing operational complexity.

The core components of a flat die granulator are a horizontally positioned circular die (flat die) and one or two rollers above it. Cylindrical holes are evenly distributed across the die surface. Raw material falls from the feed inlet between the die and rollers. A motor drives the rollers to rotate, and friction forces the rollers continuously press the raw material against the die surface, forcing it into the holes.

In the die holes, the raw material undergoes a process of “extrusion shaping → solidification forming.” A scraper below the die cuts the cylindrical material that emerges from the holes, forming pellets of uniform length.

Compared to other granulation equipment, the flat die granulator’s advantage lies in its adaptability to fibrous raw materials (such as fermented straw). The vertical compression of the rollers prevents fiber entanglement and facilitates die hole cleaning, making it suitable for the production of small and medium-sized batches of a wide variety of fertilizers.

Ring die granulator: What is the core mechanism of pellet formation?

In fertilizer granulation production, the ring die granulator is a key piece of equipment for achieving “powdered raw materials → uniform granules.” It is particularly suitable for a variety of fertilizer types, including organic fertilizers, compound fertilizers, and biofertilizers. The key to its granule formation lies in the synergistic effect of the “ring die + press roller” system, as well as precise adaptation to the raw material characteristics.

The core working components of the ring die granulator are a ring die with densely packed holes (ring die) and two to three press rollers within it. When the machine is started, pre-treated (mixed and conditioned) fertilizer raw materials (usually with a moisture content of 15%-25%) are fed into the extrusion chamber between the ring die and the press rollers. The motor drives the ring die at high speed, while the press rollers follow in the opposite direction. Friction forces press the raw materials tightly against the inner wall of the ring die.

As the ring die continues to rotate, the raw materials are forcibly squeezed into the small holes of the ring die, where they undergo a process of “extrusion → shaping → solidification.” The shape of the small holes (circular, cylindrical, or oblate) determines the appearance of the pellets, while the length-to-diameter ratio of the holes (also known as the “compression ratio”) influences pellet hardness.

Finally, the formed pellets are cut by a scraper on the outside of the ring die, forming uniform fertilizer granules. The entire process achieves “continuous feeding and continuous granulation,” adapting to the mass production needs of organic fertilizer production lines.