Key Considerations for Bio-Organic Fertilizer Production Lines

A bio-organic fertilizer production line requires consistent equipment processes and standardized operations to consistently produce high-quality fertilizer. During production, five key considerations must be carefully considered, focusing on each key stage of the production line.

Raw material pretreatment is fundamental. Before feeding the bio-organic fertilizer production line, impurities such as gravel and plastic must be removed through a screening machine to prevent damage to equipment such as grinders and mixers. A crusher is then used to grind materials such as straw and mushroom residue to a particle size of 2-5 mm to ensure uniform mixing with livestock and poultry manure. The carbon-nitrogen ratio is also adjusted through online monitoring. If the carbon-nitrogen ratio deviates from 25:1-30:1, urea or straw powder can be precisely added through an automatic dosing device to ensure raw material compatibility.

The fermentation stage requires coordinated equipment and processes. When using windrow or trough fermentation equipment, the pile height should be set at 1.2-1.5 meters. Temperature sensors should be used to monitor the pile temperature in real time. When the temperature reaches 55-65°C, a turning machine should be activated to turn the pile every 3-5 days to ensure even aeration. A humidity control system should also be activated to automatically spray water if the moisture content is below 60%, and add dry materials if it exceeds 65% to prevent spoilage and bacterial inactivation.

Prevent quality loss during further processing. Before entering the pelletizer, the fermented material must pass through a dryer to reduce the moisture content to below 20% to prevent clumping during pelletizing. During pelletizing, the particle size should be controlled at 2-4 mm to avoid uneven particle size that could affect subsequent packaging and application. All processing equipment, such as the pulverizer blades and pelletizer molds, requires regular lubrication and maintenance to prevent equipment failures that could cause production interruptions or increase impurities in the fertilizer.

Quality testing must be conducted throughout the bio-organic fertilizer production line. Sampling points are set up at the raw material inlet, after fermentation, and at the finished product outlet to conduct real-time testing of the raw material’s heavy metal content, the fermentation material’s viable bacterial count, the finished product’s organic matter content (≥30%), and its pH value (5.5-8.5). This ensures compliance with GB/T 20287-2006 standards at each stage and prevents unqualified materials from flowing into the next stage.

The packaging and storage stages ensure the final activity of the fertilizer. At the end of the production line, the fertilizer is packaged using an automatic packaging machine in breathable, moisture-proof woven bags printed with information such as the production date and viable bacterial count. After packaging, the bags are transported via conveyor belts to a ventilated warehouse, stacked no higher than 1.5 meters and away from heat sources on the production line (such as dryers). The shelf life is controlled within 6 months to ensure the fertilizer maintains high activity after leaving the factory.

Crushing process of organic fertilizer production line

In an organic fertilizer production line, the crushing process is the “throat” of the entire line, directly determining raw material processing efficiency and final product quality. It is the core link between raw material pretreatment and subsequent fermentation and granulation processes. Whether it is agricultural waste such as livestock and poultry manure, straw, and mushroom residue, or organic raw materials such as restaurant waste and garden branches, they all require scientific crushing to achieve “fragmentation” and lay the foundation for subsequent processes.

The primary task of the crushing process is to break down the raw materials’ physical structure and address the issues of uneven size and hardness among different raw materials. For example, unpulverized livestock and poultry manure may contain lumps such as straw residue and hair. If directly fed into the fermentation process, this can lead to imbalanced material permeability and localized anaerobic decay. Fibrous raw materials such as straw and branches require pulverization to reduce the particle size to 5-10 mm, making it easier for microorganisms to decompose the fiber structure and shortening the fermentation cycle. Currently, mainstream production lines mostly use cage crushers for fine grinding. For some large, hard raw materials, pre-screening is performed to remove oversized impurities before the raw materials enter the cage crusher, ensuring a particle size uniformity of over 90%.

Technical control in this process directly impacts the efficiency and product quality of the organic fertilizer production line. First, the particle size must be adjusted dynamically based on the raw material type: when processing high-moisture manure, the grinding fineness must be appropriately controlled to prevent clumping; when processing straw with a high lignin content, the particle size must be refined to improve composting maturity. Second, controlling dust and impurities during the grinding process is crucial. Reputable production lines install magnetic separation devices at the grinder inlet to remove metal impurities and bag filters at the discharge to meet environmental requirements and minimize equipment wear.

It is important to note that the finer the grinding process, the better. Excessive grinding not only increases energy costs but can also reduce the material’s aeration during fermentation, ultimately prolonging composting time. Industry practice demonstrates that crushing raw materials to a particle size that “clumps together in the hand and falls apart with a light squeeze” not only ensures microbial activity but also improves the yield rate in the subsequent granulation process. High-quality pulverization is a prerequisite for producing organic fertilizer products with uniform particles and meeting organic matter content standards. It is also a key step in promoting the efficient resource utilization of agricultural waste.

Have You Discovered the Magic of Rotary Drum Granulators?

 In modern industrial production, rotary drum granulators have become indispensable equipment across numerous industries due to their outstanding performance and high efficiency. These remarkable machines represent a specialized category of fertilizer production machinery, with particular significance in organic fertilizer production.

Specifically designed as core components of organic fertilizer manufacturing machine systems, rotary drum granulators efficiently transform raw organic materials into uniform, high-quality granules. Their robust design and precise operation make them the preferred choice in modern organic fertilizer production machinery lines, combining mechanical simplicity with sophisticated processing capabilities that ensure optimal nutrient preservation and product quality. 

“From an impressive 70% granulation rate to innovative steam heating systems, rotary drum granulators are redefining industrial granulation standards.”

High-Efficiency Granulation with Recycling

The most striking feature of rotary drum granulators is their remarkable 70% granulation rate. Compared to traditional equipment, they not only significantly improve production efficiency but also ingeniously address the issue of material returns. Those small particles that fail to granulate are automatically separated and reintroduced into the granulation process. This closed-loop design reduces waste while lowering raw material costs.

Steam Heating for Energy Efficiency

The built-in steam heating system is a masterpiece of engineering wisdom. By precisely controlling material temperature, the moisture content of finished pellets is significantly reduced, improving the efficiency of subsequent drying processes by at least 30%. More impressively, this heating method saves over 40% more energy than traditional electric heating, resulting in substantial long-term energy cost reductions.

Innovative Lining for Durability

Engineers have employed special rubber and engineering plastics as lining materials, solving two major industry pain points: material adhesion and equipment corrosion. This composite material not only extends equipment lifespan but also ensures production stability through excellent thermal insulation properties, maintaining optimal performance even during continuous operation.

Cost-Effective with Easy Maintenance

While maintaining high output, rotary drum granulators consume 15%-20% less electricity than comparable products. Even more remarkably, their modular design makes routine maintenance exceptionally simple. Basic upkeep is usually sufficient to keep the equipment running efficiently, significantly reducing maintenance costs and downtime for businesses.

From chemicals to metallurgy, pharmaceuticals to environmental protection, rotary drum granulators are transforming production methods across countless industries with their exceptional performance. They’re not just machines, but perfect embodiments of industrial intelligence and sustainable development.

The production process of an NPK fertilizer production line

NPK fertilizer contains three core nutrients: nitrogen, phosphorus, and potassium. Its production requires a precise process to ensure balanced nutrients and consistent quality. Every step, from raw materials to finished product, integrates industrial technology with agricultural needs.

The first step in production is raw material pretreatment. Raw materials such as urea, monoammonium phosphate, and potassium chloride are first crushed to 80-100 mesh in a crusher. They are then screened through a vibrating screen to remove impurities and ensure raw material purity, which is essential for subsequent fertilizer dissolution and absorption.

Next comes batching and mixing. The production line relies on an automated control system to precisely weigh the raw materials according to preset formulas such as 15-15-15 and 20-10-10. The raw materials are then fed into a twin-shaft mixer, where they are stirred at high speed for 3-5 minutes to create a uniform mixture, preventing imbalanced crop growth due to uneven nutrient distribution.

Then, the granulation process begins. The mixed material is conveyed to a rotary drum granulator, where centrifugal force and friction aggregate the material into 2-4 mm granules as the drum rotates. Some production lines spray a binder to enhance hardness and prevent breakage. The granules are initially screened at the exit, and unqualified fines are returned to the mixing stage for recycling.

After granulation, they are dried and cooled. First, they enter a drum fertilizer dryer, where hot air at 120-150°C reduces the moisture content to below 10%. They then enter a cooler, where countercurrent heat exchange with cold air cools them to room temperature, preventing clumping, extending shelf life, and improving granule stability.

Finally, they undergo screening and packaging. The cooled granules pass through a vibrating screen to separate the coarse particles (returned to the crusher) from the fines (returned to the granulator). Qualified granules are then bagged by an automatic packaging machine in sizes ranging from 25 kg to 50 kg. Labels are then applied with the formula and production date, and the bags are then stored for shipment, providing nutrition for crops.

The NPK fertilizer production line uses an automated and precise process to convert chemical raw materials into agricultural “nutrients”, ensuring quality while supporting the efficient development of modern agriculture.

How to Choose the Right Disc Granulator for Your Production Line

In fertilizer production lines, the choice of disc granulator directly impacts production capacity and product quality. Combining the technical specifications and application characteristics of Huaqiang Heavy Industry’s disc granulators, a sound selection requires focusing on four key dimensions.

First, precisely matching production needs is crucial. Equipment requirements vary significantly across industries. For the fertilizer industry, when producing organic fertilizer, rubber or polyurethane-lined models are preferred to avoid corrosion and accommodate fermentable materials like livestock and poultry manure. The recommended rotational speed is 10-18 rpm to preserve organic matter activity. For inorganic compound fertilizer production, ensuring uniform feed distribution and a consistent mixing of nitrogen, phosphorus, and potassium is crucial. Production capacity selection should be based on specific parameters. For example, a small workshop with an hourly production capacity of 0.05-0.15 tons should choose the ZL-500 model, while a large factory with a production capacity of 3.5-6 tons should opt for the ZL-3600 model. A 10%-15% capacity margin should be reserved to account for seasonal fluctuations.

Second, pay close attention to the core configuration details of the equipment. The drive system determines operational stability. For example, the ZL-3600 model, equipped with an 18.5kW motor and a 10r/min speed, can accommodate high-load granulation needs. The disc inclination angle should be adjustable from 30° to 60°, allowing for flexible adjustment based on material viscosity. For example, highly viscous mineral powders require a larger inclination angle of around 50° to reduce wall sticking. The water spray system should be equipped with multiple sets of adjustable nozzles to ensure a stable moisture content of 10%-20% to prevent loose particles and agglomeration. This is crucial for the strength of fertilizer pellets and the quality of metallurgical mineral powder pellets.

Furthermore, a comprehensive assessment of the manufacturer’s capabilities is crucial. Prefer companies like Huaqiang Heavy Industry that have comprehensive production capabilities. Their 12 disc granulator models cover varying production capacity requirements and allow customers to visit their factory for a firsthand understanding of the equipment’s production processes and quality control procedures. Also, consider whether the manufacturer offers customized services.

Finally, prioritize after-sales service and supporting support. Confirm whether the manufacturer offers free installation, commissioning, and operator training to prevent production disruptions caused by improper operation. Equipment packaging must meet transportation standards, such as packaging the main unit bare to minimize impacts and plywood boxes for electrical components. Customized wooden boxes can be used for special transportation needs. Furthermore, the inventory cycle and warranty policy for consumable parts such as nozzles and inner linings must be clearly defined to ensure long-term stable operation of the equipment and reduce future maintenance costs.

Maintenance tips to extend the lifespan of fertilizer crusher

As a key piece of equipment in fertilizer production, the lifespan and operational stability of a fertilizer crusher directly impact production efficiency and costs. Mastering sound maintenance techniques can effectively extend the lifespan of the equipment and reduce malfunctions.

First, regularly inspect the wear of crushing components. Components such as the crushing blades, hammers, and tooth plates will wear out over time. Failure to replace them promptly can reduce crushing efficiency and even affect particle size. It’s recommended to establish a regular inspection schedule based on production frequency and material hardness. Replace severely worn components promptly to ensure that the crushing components are always in good working condition.
Second, ensure proper equipment cleaning. When processing wet materials, fertilizer crushers are prone to material sticking to the crushing chamber, feed inlet, and discharge port. Failure to clean them promptly can cause equipment blockage and affect normal operation. After each use, promptly clean any residual material inside the equipment and regularly clean the exterior to keep it clean and tidy.

Also, pay attention to the maintenance of the drive system. The motor and transmission are the power source for the equipment. Regularly check the motor’s operating temperature and the lubrication of the transmission. If abnormal motor temperatures, unusual noises from the transmission, or insufficient lubrication are detected, the machine should be shut down for inspection, troubleshooting, and lubricant replenishment to ensure stable operation of the drive system.

Finally, establish a comprehensive maintenance record system that details the time, content, and equipment status of each maintenance session. This will facilitate subsequent tracking of fertilizer crushers operation and identify potential problems promptly.

Half-wet material crusher: A key equipment for solving the challenge of handling high-moisture materials

Crushing high-moisture materials has long been a thorny issue in industries such as agriculture, environmental protection, and the chemical industry. Traditional dry crushers often clog and inefficiently process materials like wet straw, organic fertilizer, and wet garbage, severely impacting production progress. The advent of the half-wet material crusher has revolutionized this situation.

The half-wet material crusher is designed specifically for handling materials with a certain degree of moisture content and effectively addresses the crushing needs of high-moisture materials. Its unique structural design and anti-clogging device prevent material from clumping during the crushing process. Whether it’s wet straw generated in agricultural production, wet garbage disposal in the environmental protection sector, or specialized wet raw materials in the chemical industry, the half-wet material crusher can perform stable and efficient crushing operations, laying a solid foundation for subsequent processing.

In practical application, the half-wet material crusher, with its wide adaptability, has become a vital piece of equipment across multiple industries. It not only improves material handling efficiency but also reduces equipment failures and maintenance costs, making it a key contributor to the resourceful utilization of high-moisture materials.

Differences in Equipment Selection Between Wet and Dry Granulation in the Fertilizer Industry

In fertilizer production, granular fertilizers are widely used due to their advantages such as ease of application and uniform nutrient release. The differences in equipment selection between wet and dry granulation directly impact fertilizer quality and production efficiency, requiring precise matching based on fertilizer characteristics.

In the fertilizer industry, wet granulation focuses on “liquid-solid granulation,” and equipment selection is designed around nutrient dissolution and granule solidification. Key equipment is a rotary drum granulator or disc granulator. A rotary drum granulator uses a rotating, tilted drum to mix fertilizer powder with liquid raw materials such as phosphoric acid and ammonia, forming granules through the bonding force between the materials. This makes it suitable for producing nitrogen, phosphorus, and potassium compound fertilizers, ensuring uniform coating of multiple nutrients. A disc granulator uses high-speed rotation to generate centrifugal force, which forces the material and binder to form spherical granules. This makes it suitable for fertilizers such as organic fertilizers that require a fluffy structure. A drum fertilizer dryer is required to remove excess moisture from the granules using hot air, preventing fertilizer clumping and nutrient loss. This is a hallmark of wet granulation in the fertilizer industry.

Dry granulation requires no liquid addition, and the equipment used focuses on “physical extrusion shaping,” making it more suitable for heat-sensitive or water-soluble fertilizers. The core equipment is a double roller press granulator, which uses a pair of rollers to press fertilizer powder into dense flakes. This is then crushed and sieved to form granules, preventing moisture from deliquescing in fertilizers like urea and ammonium nitrate, while also minimizing nutrient volatilization. Some high-hardness raw materials require a crusher to pre-process the lumpy fertilizer into a fine powder to ensure uniform feeding. Dry granulation eliminates the need for drying equipment, streamlines the process, and preserves water-soluble nutrients, making it suitable for producing water-soluble or slow-release fertilizers.

When selecting fertilizers, wet granulation equipment is preferred for producing compound fertilizers requiring high nutrient content. Dry granulation equipment is more suitable for processing heat-sensitive, soluble fertilizers. Wet granulation equipment also consumes more energy and is suitable for large-scale production, while dry granulation equipment occupies less space and is more suitable for small- to medium-volume production of specialty fertilizers.

The Secrets of Bio-Organic Fertilizer Production Lines

The bio-organic fertilizer production line is the core vehicle for transforming agricultural waste into high-quality fertilizer. Its production process requires scientific proportioning and precise processing to ensure the fertilizer is both nutritious and active.

The first step in production is raw material pretreatment. Workers transport raw materials such as livestock and poultry manure, straw, and mushroom residue to the workshop, where they are sorted to remove impurities. A crusher then pulverizes the straw and other coarse fiber materials to 2-5 mm. An automatic batching system then automatically mixes the various raw materials according to the optimal carbon-nitrogen ratio of 30:1 and adds composting agents, laying the foundation for subsequent fermentation.

The second step is the high-temperature aerobic fermentation stage. The mixed raw materials are fed into a fermentation tank or vat, where the fermentation system continuously controls temperature, humidity, and oxygen content. The temperature initially rises to above 55°C to kill insect eggs and pathogens; in the middle, it is maintained at 60-70°C to promote microbial decomposition of organic matter; and in the later stages, the temperature gradually decreases to form stable humus. The entire process takes approximately 7-15 days, during which time a compost turning machine turns the fertilizer every 2-3 days to ensure even fermentation.

After fermentation is complete, the material enters the advanced processing stage. A drum screener separates the uncomposted coarse material (which returns to the fermentation stage). Qualified material is then fed into a granulator (such as a rotary drum granulator or a new type organic fertilizer granulator). Depending on market demand, it can be produced in various forms, such as granules or powders. The granular fertilizer needs to go through a drum fertilizer dryer to reduce the moisture content to below 15%, and then pass through a drum cooler to cool it to room temperature to prevent clumping.

Finally, the finished product is processed and tested. After cooling, the fertilizer is coated with a probiotic agent in a film coating machine to improve its effectiveness and stability. It is then weighed and packaged. Quality inspection departments will sample and test the fertilizer for indicators such as organic matter content and effective viable bacterial count. Only products that meet national standards are labeled and shipped to farmland, providing green energy for crop growth.

Screening in an Organic Fertilizer Production Line

In the entire organic fertilizer production process, the screening process acts as a sophisticated “quality filter,” directly determining the particle uniformity and impurity content of the final product. It is the core link between fermentation and finished product packaging. Neglecting meticulous control of the screening process can lead to reduced product quality due to residual impurities or uneven particle size, even with the most advanced fermentation processes, impacting market competitiveness.

Currently, mainstream organic fertilizer production lines mostly utilize a combination of “vibration screening + drum screening.” The vibrating screener machine‘s high-frequency vibrations quickly separate large impurities (such as uncomposted straw and gravel) from the material. The screen’s aperture can be flexibly adjusted to product requirements, typically selecting a 10-20 mesh size to meet common organic fertilizer standards. The drum screener machine, on the other hand, uses a slowly rotating cylindrical screen drum to perform a secondary classification of fine particles, effectively removing powdery materials and ensuring a final particle size deviation within ±2mm. The synergistic operation of these two devices can increase material screening efficiency to over 95%, significantly reducing the risk of blockage in the subsequent packaging process.

Operational control during the screening process is equally critical. Screen wear must be regularly inspected, and if mesh deformation exceeds 5%, it must be replaced promptly to avoid missed screens. Furthermore, equipment parameters must be dynamically adjusted based on the moisture content of the material. If the moisture content of the fermented material exceeds 30%, the vibration frequency or drum speed must be appropriately reduced to prevent the material from sticking to the screen and affecting screening efficiency. By establishing a management system that includes “two-hourly screen inspections and real-time moisture content monitoring,” one organic fertilizer manufacturer increased its product qualification rate from 88% to 99.2%, reducing annual reject losses by over 120 tons.

As the organic fertilizer industry’s demand for product quality increases, screening technology is evolving towards intelligent technology. Some advanced production lines have incorporated IoT monitoring systems, using sensors to collect real-time data such as screening output and impurity separation rate, enabling unmanned, precise screening. This technological innovation not only reduces labor costs but also further ensures the stability of screening accuracy, laying a solid foundation for organic fertilizer products to enter the high-end market.